Cr(VI) induces premature senescence through ROS-mediated p53 pathway in L-02 hepatocytes

نویسندگان

  • Yujing Zhang
  • Yiyuan Zhang
  • Caigao Zhong
  • Fang Xiao
چکیده

Hexavalent Chromium [Cr(VI)], which can be found of various uses in industries such as metallurgy and textile dying, can cause a number of human disease including inflammation and cancer. Unlike previous research that focused on Cr(VI)-induced oxidative damage and apoptosis, this study placed emphasis on premature senescence that can be induced by low-dose and long-term Cr(VI) exposure. We found Cr(VI) induced premature senescence in L-02 hepatocytes, as confirmed by increase in senescence associated-β-galactosidase (SA-β-Gal) activity. Cr(VI) stabilized p53 through phosphorylation at Ser15 and increased expression of p53-transcriptional target p21. Mechanism study revealed Cr(VI) targeted and inhibited mitochondrial respiratory chain complex (MRCC) I and II to enhance reactive oxygen species (ROS) production. By applying antioxidant Trolox, we also confirmed that ROS mediated p53 activation. A tetracycline-inducible lentiviral expression system containing shRNA to p53 was used to knockout p53. We found p53 could inhibit pro-survival genes B-cell lymphoma-2 (Bcl-2), myeloid leukemia-1 (Mcl-1) and S phase related cell cycle proteins cyclin-dependent kinase 2 (CDK2), Cyclin E to induce premature senescence, and the functional role of ROS in Cr(VI)-induced premature senescence is depend on p53. The results suggest that Cr(VI) has a role in premature senescence by promoting ROS-dependent p53 activation in L-02 hepatocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of autophagy protects against ROS-mediated mitochondria-dependent apoptosis in L-02 hepatocytes induced by Cr(VI).

BACKGROUND Hexavalent chromium (Cr(VI)) overdose causes hepatocellular injuries by inducing mitochondrial damage and subsequent apoptosis in animals and humans. Autophagy can selectively remove damaged organelles, especially impaired mitochondria, and in turn, protects against mitochondria-dependent cell death. The present study was designed to explore the effects of autophagy on the Cr(VI)-ind...

متن کامل

Xie/Xiao/Luo/Zhong: Activation of Autophagy Protects Against Cr(VI)-Induced Apoptosis in L-02 Hepatocytes

Background: Hexavalent chromium (Cr(VI)) overdose causes hepatocellular injuries by inducing mitochondrial damage and subsequent apoptosis in animals and humans. Autophagy can selectively remove damaged organelles, especially impaired mitochondria, and in turn, protects against mitochondria-dependent cell death. The present study was designed to explore the effects of autophagy on the Cr(VI)-in...

متن کامل

Hexavalent chromium targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent caspase-3 activation in L-02 hepatocytes.

Hexavalent chromium [Cr(VI)], which is used for various industrial applications, such as leather tanning and chroming, can cause a number of human diseases including inflammation and cancer. Cr(VI) exposure leads to severe damage to the liver, but the mechanisms involved in Cr(VI)-mediated toxicity in the liver are unclear. The present study provi...

متن کامل

Role of reactive oxygen species and p53 in chromium(VI)-induced apoptosis.

Apoptosis is a programmed cell death mechanism to control cell number in tissues and to eliminate individual cells that may lead to disease states. The present study investigates chromium(VI) (Cr(VI))-induced apoptosis and the role of reactive oxygen species (ROS) and p53 in this response. Treatment of human lung epithelial cells (A549) with Cr(VI) caused apoptosis as measured by DNA fragmentat...

متن کامل

CoQ10 Deficiency May Indicate Mitochondrial Dysfunction in Cr(VI) Toxicity

To investigate the toxic mechanism of hexavalent chromium Cr(VI) and search for an antidote for Cr(VI)-induced cytotoxicity, a study of mitochondrial dysfunction induced by Cr(VI) and cell survival by recovering mitochondrial function was performed. In the present study, we found that the gene expression of electron transfer flavoprotein dehydrogenase (ETFDH) was strongly downregulated by Cr(VI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016